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In this paper, a microring resonator (MRR) system using double-series ring resonators is proposed to generate and 

investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus waveguide which 

is used as propagation and oscillation medium. The scattering matrix method is employed to determine the output 

signal intensity which acts as the input source between two-level Rabi oscillation states, where the increase of Rabi 

oscillation frequency with time is obtained at the resonant state. The population probability of the excited state is 

higher and unstable at the optical resonant state due to the nonlinear spontaneous emission process. The enhanced 

spontaneous emission can be managed by the atom (photon) excitation, which can be useful for atomic related sen-

sors and single-photon source applications. 
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Optical microring resonator (MRR) has emerged as a 

potential photonic structure in integrated technology with 

low power consumption[1]. MRR contributes in various 

technological applications, such as optical sensors[2], 

optical amplification[3], polarization conversion[4], opto-

fluidic devices[5], optical spin generators[6], frequency 

shifters[7] and on-chip spectrometry bio-analysis[8]. In 

quantum, the interaction between atoms and electromag-

netic field is described precisely by the energy state tran-

sition as interaction phenomenon occurs in small dis-

tance with short time. 

The probability of atom transition between two energy 

levels is used to explain the interaction between electro-

magnetic field and atoms. Based on the perturbation the-

ory, the atomic state population remains constant, as the 

probability amplitude of an atom transiting to other en-

ergy states is small. However, in presence of strong light 

field, the atomic population increases in higher energy 

level[9]. The probability of atom transition is found in 

form of oscillation against time which shows that the 

atom could be in ground or higher energy level, and such 

oscillations are known as Rabi oscillation[10]. The energy 

states for a system can be analyzed using the Hamilto-

nian of time-dependent Schrodinger equation for the 

light-atom interaction. 

In this paper, a theoretical formulation for the optical 

bright soliton pulse propagation within the nonlinear 

silicon-on-insulator (SOI) double-series microring reso-

nator (DSMRR) system is presented based on optical 

transfer function[11] and scattering matrix method[12]. The 

SOI shows the nonlinear optical properties at various 

wavelengths, which provides strong light confinement[13] 

and is suitable for high-speed passive-waveguide appli-

cations. The Rabi oscillation at the through port of 

DSMRR system is described by the Hamiltonian, which 

represents the atoms with ambient surrounding as an 

unperturbed condition and the atoms interacting with 

optical bright soliton beam as a perturbed condition. The 

Rabi frequency equations for the interaction between 

atom and light within the DSMRR system are obtained 

by the analytical derivation of two-level atom approxi-

mation. The output intensity of the DSMRR and the Rabi 

oscillation are analyzed and investigated for probability 

of finding the particles in excited states. The potential of 

Rabi frequency and oscillation in a nonlinear microring 

circuit for switching and sensing applications is also dis-

cussed. 

The two-level atom is used to manipulate light as a 

particle which propagates in a nonlinear DSMRR, where 

the ground and excited states of the atom during interac-
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tion are given by 
g

ψ and 
e

ψ with energy eigenvalues 

of Eg and Ee, respectively. The energy difference related 

to the transition energy of atom is given as ħω0=Eg−Ee  
with atomic transition angular frequency of ω0. The 

Hamiltonian of two-level system is given as[9,10] 

0 int

ˆ ˆ ˆ( , ) ( ) ( , )H r t H H r tψ ψ= + ,                                    (1) 

where Ĥ0 shows the unperturbed Hamiltonian operator, 

and Ĥint is the perturbed Hamiltonian operator. The atom 

Hamiltonian and the field Hamiltonian both contribute to 

the unperturbed Hamiltonian as 

0 a f
ˆ ˆ ˆH H H= + ,                                                           (2) 

where the atomic Hamiltonian is 

2

†

a 0
2

ˆ
P

H ћ a a
m

ω= + ,                                                  (3) 

and the field Hamiltonian is given as 

†

0f
ˆH aћ aω= ,                                                           (4) 

where P is the center-of-mass momentum operator, m is 

the mass of atom, ħω0 is the energy of photon, and a† and 

a are the atomic ladder operators as illustrated in Fig.1. 
 

 

Fig.1 Equal spaced ladder energy level generated by 

multiple action of ladder operator to the state with 

energy of En 

 

The interaction Hamiltonian is given by Ĥint in Eq.(1), 

which describes the coupling of the electromagnetic field 

to atom, and the electric dipole moment operator d is 

given in  

( )
int

ˆ EH d t= − ⋅ .                                                        (5) 

At this point, a spatially uniform dipole approximation is 

considered. The atomic behavior is described by the gen-

eral state which can be expressed as a linear combination. 

The general solution of time-dependent Schrodinger 

equation (TDSE) state is equal to the sum of the states in 

the system, which is given as 

( )( , ) ( ) ( ) exp i /
i

i
i i

r t c t r E tψ ψ= −∑ h .                      (6) 

The subscript i indicates each Eigen state which exists in 

the system. The TDSE solution is represented to the 

ground state and the excited state for a two-level energy 

system as 

( )g g g
( , ) ( ) ( ) exp i /r t c t r E tψ ψ= − +h  

( )
e e e
( ) ( ) exp i /c t r E tψ − h ,                                    (7) 

where cg(t) and ce(t) are the amplitudes of the wave-

function for the two-level energy system, which indicate 

ground state ψg and excited state ψe, respectively. The 

states ψg(r) and ψe(r) are the position-space wave func-

tions which satisfy the orthonormal states as given in  

g e ge
ψ ψ δ= ,                                        (8) 

where δge is the Kronecker delta function. 

By substituting the wave functions given in Eq.(7) into 

the Hamiltonian Eq.(1), with consideration of the rotat-

ing wave approximation, and neglecting the rapidly os-

cillating term, ω−ω0<<ω, the differential forms of cg(t) 
and ce(t) can be determined as[9] 

* i

g R e
i e

t

c c
ΔΩ=& ,                                                  (9) 

i

e R g
i e

t

c cΩ − Δ=& ,                                                         (10) 

where Δ≡ω−ω0 is the detuning parameter, and ΩR is the 

Rabi frequency which represents the frequency of oscil-

lation for atomic transition in light field. Eqs.(9) and (10) 

are well-known mathematical representation of Rabi 

oscillation between the ground and the excited states for 

a two-level system. From the trial solution of ce(t)=eiλt, 

and by considering the initial conditions of cg(0)=1 and 

ce(0)=0, the normalized probabilities to find atom in 

ground and excited states are given as 

2 2

g g R
( ) (| | cos ( / 2))P t c t tΩ= = ,                                 (11) 

2 2

e e R
( ) (| | sin ( / 2))P t c t tΩ= = ,                                 (12) 

where ΩR=|E0μ12/ħ| is the total Rabi frequency[10], which 

is related to the electric field equation of E(r)≈E0(z)= 

( ) 0
i
e

z

A z
βϑ  with ( ) ( )1/4 1/2

0 0 0
/ 2nϑ μ ε= . μ0 and ε0 are the 

permeability and permittivity in vacuum, respectively. n0 

is the linear refractive index, β0=ωn0/c is the propagation 

constant, c is the speed of light, and A(z) is the complex 

amplitude. For defining the impact of two-photon ab-

sorption (TPA) and free-carrier effect of optical 

wave[14,15], the evolution of electric field associated with 

this optical wave is described by a nonlinear differential 

equation as 

2

/ / 2 i | |A z A A Aα γ∂ ∂ = − + ,                                (13) 

where α is the linear loss, and γ=kn2 represents the Kerr 

effect, where k and n2 are the wave number and nonlinear 

refractive index, respectively. The solution of Eq.(13) is 

given as  

[ ]( , ) ( ) exp i ( )A r t I t zφ= ,                                (14) 

and the required result in term of intensity[10] can be ex-

pressed as 

2

0

1

2
I c nEε= .                                                          (15) 
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The schematic diagram of a nonlinear DSMRR system 

with the notation is shown in Fig.2. The optical bright 

soliton pulse with angular frequency of ω0 used for the 

optical input pulse of the DSMRR waveguide[6,16] is 

given as 

( )
in 0 0

0 D

 sech exp i
2

T x
E t A t

T L
ω

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
,                   (16) 

where Ein represents the electric field of optical bright 

soliton, and A0 depicts the optical field amplitude with 

the propagation length x. The pulse propagation time is 

T=t−β1x, and T0 is the initial propagation time. β1 and β2 

are the coefficients of the linear and the second-order 

terms of Taylor expansion of propagation. LD=T0/|β2| is 

the dispersion length of the soliton pulse, and t is the 

phase shift. Fig.2 illustrates the microring resonator con-

figuration which consists of two MRRs and one bus pla-

nar waveguide with optical bright soliton propagation 

along straight SOI waveguide coupled laterally to a ring 

with radius of R. 

 

 

Fig.2 The schematic diagram of DSMRR system (Ei: 

optical electric fields; R: radius of ring; ξ: single-pass 

phase shift) 

 

The radii of main microring (RM) and the right-sided 

microring (RRS) are 5 μm and 2 μm, respectively. The 

dotted and dash arrows represent the cross-coupling co-

efficients iS between two waveguides and self-coupling 

coefficients C through a waveguide, which can be de-

scribed as 

a a a
i i 1S κ γ= − , 

b b b
i i 1S κ γ= − ,                   (17) 

a a a
1 1C κ γ= − − ,

b b b
1 1C κ γ= − − ,              (18) 

where κa and κb are the coupling coefficients for coupling 

regions 1 and 2 as illustrated in Fig.3, respectively, and γ 

is the propagation loss as the pulse travels within the 

waveguide materials. The electric fields on both sides of 

the point coupler satisfy the following relations as[17] 

1 a in a 5
iE S E C E= + ,                                                   (19) 

1

1/4

1' M
E E ξ= ,                                                              (20) 

2 1' 3b b
iE S E C E= + ,                                                   (21) 

3 2 RS
E E ξ= ,                                                               (22) 

4 3 'b 1b
iE S E C E= + ,                                                   (23) 

3/4

5 4 M
E E ξ= ,                                                             (24) 

5thr a a in
iE S E C E= + ,                                                 (25) 

where 1/4

M
ξ , 3/4

M
ξ and ξRS are the single-pass phase shifts as 

the electric field propagates in bending waveguide, 

which are given as[18] 

1/4

M M M
exp (1/ 4) i ( / 4)

2
n

L k L
αξ ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦
,                  (26) 

3/4

M M M
exp (3 / 4) i (3 / 4)

2
n

L k L
αξ ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦
,                (27) 

RS RS RS
exp i

2
n

L k L
αξ ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦
,                                   (28) 

where α is the attenuation constant, and kn is wave-vector 

with corresponding refractive index of the system[19]. 

Thus the ratio of the output electric field at through 

port Ethr to input electric field Ein is given as 

( )

( )

2 M RS 2

RS 2

M RS 2

R

1

thr

in

1

S 2

1

1

 

1

C

C
C

E

E
C

C

C

ξ ξ
ξ

ξ ξ
ξ

−
=

⎡ ⎤
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⎣ − ⎦

−
−

−
.                                   (29) 

The through port electric field Ethr of the MRR system is 

proportional to the output intensity as shown in Eq.(15). 

 

 

Fig.3 The planar SOI DSMRR configuration and the 

cross-sectional area shown in the inset 

 

The manipulation of the Rabi oscillation is performed 

using bright soliton pulse as the input source for MRR 

system. The MRR system consists of two coupling re-

gions between bus waveguide and main microring 

waveguide and between main microring and right-sided 

microring waveguide as shown in Fig.3. The radius of 

right-side ring is smaller than that of main ring to avoid 

another coupling with the bus waveguide. As the evanes-

cent field of bright soliton pulses is coupled to the ring 

waveguide, the intensity of coupled field is enhanced as 

it propagates within the SOI MRR waveguide due to 

nonlinear effects. The output light is used as the optical 

radiation source for the Rabi oscillation as shown in 

Fig.3, which can be used as the atomic sensing probe.  



NOORDEN et al                                                                                                                      Optoelectron. Lett. Vol.11 No.5 ·0345· 

In this paper, the calculation is performed for an SOI 

DSMRR with radii of main and right-sided rings of 

RM=5 μm and RRS=2 μm, respectively, center wavelength 

of λ=1 550 nm, effective refractive index of n0=3.484, 

attenuation constant of α=1 dB/cm2 and refractive index 

of n2=6×10-18 m2/W[14]. The transmission signal of the 

MRR system is investigated, and the transmitted output 

intensities (at through port) versus the soliton input in-

tensity with different coupling coefficients of the system 

are shown in Fig.4(a). Fig.4(b)–(d) are the enlargements 

of Fig.4(a) for each coupling coefficient, which shows 

the bistability and hysteresis loop of the transmission 

output signal due to the nonlinear effect. 

The arrows in Fig.4(b)–(d) indicate the switching 

power working principles for ON and OFF operation. As 

shown in Fig.4(a), the optical bistability effect[20,21] initi-

ates at 8.68 GW/cm2, 12.32 GW/cm2 and 15.01 GW/cm2 

and ends at 10.15 GW/cm2, 13.94 GW/cm2 and 

21.95 GW/cm2 for the coupling coefficients of 0.4, 0.5 

and 0.6, respectively. The increase of coupling coeffi-

cient widens the range of the bistability signal with re-

spect to the input intensity.  The transmission signal 

shows that the increase of coupling coefficient causes the 

weaker switching as the area hysteresis loop of the signal 

is reduced. The bistablity DSMRR system can also be 

used as a flip-flop. The white-dots on the hysteresis loop 

of two stable states indicate the positions of threshold 

switching power with respect to input signal, which can 

act as the trigger points for flip-flop operation[22]. 

 

 

(a) 

 

(b) κ3=0.4 

 

(c) κ2=0.5 

 

(d) κ1=0.6 

Fig.4 (a) Bistability hysteresis curves of through port 

transmission signal and (b)–(d) the enlargements for 

different coupling coefficients  

 

The probabilities of finding atoms in the excited and 

ground states at the through port are illustrated in Fig.5. 

Initially, the atoms are shifted to the excited state from 

the ground state due to interaction with optical soliton 

pulse and cause the increase of frequency with respect to 

the time as shown in Fig.5(a). As the intensity increases 

at through port, the transition probability becomes unsta-

ble due to nonlinear optical resonance effect in the 

DSMRR system as shown in Fig.5(b) and (c).  

The high frequencies of the Rabi oscillations are ob-

served in the ranges from 6.7 ns to 7.5 ns and from 

13.6 ns to 14.4 ns, where the radiation intensity at the 

through port is also higher. The nonlinear resonant inten-

sity (bistability) is obtained between 7.5 ns and 13.6 ns 

as shown in Fig.5(b) and (c), which produces an unstable 

(damping) oscillation with population probabilities of 0.8 

and 0.2 at 8.3 ns for excited and ground states, respec-

tively. Moreover, the decreases of frequency and ampli-

tude of Rabi oscillations are observed at 9.7 ns, where 

the population probabilities at excited and ground energy 

states are 0.6 and 0.4, respectively. The atom stays active 

in the middle of both states and delays the oscillation, till 

it absorbs the photon from the pulse at through port be-

fore it de-excites and generates Rabi oscillation. The 

relation of the normalized transmission intensity at the 

through port with the Rabi frequency in gigahertz is cal-

culated and shown in Fig.6. The increase of the optical 
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intensity contributes to the enhancement of Rabi fre-

quency.   

 

 
(a) For excited state and ground state with time range from 4 ns to 6.5 ns 

 
(b) For excited state with time range from 6.5 ns to 14.5 ns 

 
(c) For ground state with time range from 6.5 ns to 14.5 ns 

Fig.5 Probabilities of finding atoms in the ground and 

excited states 

 

The Rabi frequency becomes unstable due to the reso-

nance effect of pulse at through port. For instance, 86% 

normalized intensity at the through port is obtained at 

10.6 ns as shown in Fig.7. The Rabi frequency begins to 

decline when the intensity of the system is increased to 

99%. The damping of the Rabi oscillation provides the 

unusual behavior of the atoms between ground and ex-

cited states as shown in Fig.7.  

The dashed lines in inset of Fig.7 represent the time 

interval from 7.75 ns to 13.28 ns for optical resonance 

effect within the DSMRR system. The intensity is de-

creased as pulses propagate for 10 000 round trips in 

which it reaches the resonance state due to the nonlinear 

effect of the system. Due to the decrease of intensity at 

through port, the Rabi frequency is unstable, which 

causes the random spontaneous emission generated by 

the excited atoms. At the excited state, atoms undergo 

the near-elastics collision due to conservation of energy, 

and the phase of the wave-function is randomly changed. 

The change of phase causes the damping of oscillation 

which depends on the phase coherence. The random 

spontaneous emission causes disturbance on the coher-

ence phase of optical resonance pulses, and hence re-

duces the oscillation frequency. 

 

 

Fig.6 Relation between output intensity and Rabi fre-

quency at the through port   

 

Fig.7 The Rabi frequency behavior with respect to 

time and the through port intensity 

 

When the optical pulse intensity is high, the spontane-

ous emission can be negligible, while when the intensity 

is reduced, the spontaneous emission must be considered. 

This relation between the spontaneous emission rate and 

the light intensity is known as Purcell effect. The en-

hancement of the spontaneous emission by excited atom 

becomes one of the possible ways for atomic sensors[23] 

and single-photon sources[24] as the process can be con-

trolled by manipulating the quality factor of microring 

resonator. 
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A DSMRR system is proposed to generate and inves-

tigate the Rabi oscillations. The hysteresis loop is 

achieved from the proposed configuration, and it is inde-

pendent of coupling coefficients κi of the system. The 

numerical simulations reveal that the atomic transitions 

in core medium depend on the resonance intensity which 

will influence the Rabi frequency. The probability of 

finding the atom at the excited state is higher in the reso-

nance condition. The Rabi oscillation frequency is in-

creased with time before it reaches the resonance state. 

The damping in the oscillations is observed in resonance 

state due to high population in excited state in time range 

from 7.75 ns to 13.28 ns. In the resonance state, the 

SDMRR system generates the unstable oscillation for a 

period of time called as resonance time. The calculation 

of the Rabi oscillation can be useful for applications, and 

more complicated circuits, such as add-drop filter, po-

larization maintaining and absorption reducing (PANDA) 

ring resonator and cascaded system, can be used as the 

atomic sensor. 
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